267 research outputs found

    New insights on Laminaria digitata ultrastructure through combined conventional chemical fixation and cryofixation

    Get PDF
    Acknowledgements The research leading to these results received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No .730984, ASSEMBLE Plus project, supporting access of CK and FCK to the Station Biologique de Roscoff. This work was conducted in conjunction with the European Marine Biological Resource Centre (EMBRC-ERIC), EMBRC-France. French state funds are managed by the ANR within the Investments of the Future program under reference ANR-10-INSB-02. Also, funding from the UK Natural Environment Research Council (NERC) through grants NE/D521522/1, NE/F012705/1, and Oceans 2025 (WP4.5) programs to FCK; the National Science Foundation (CHE-1664657) and the National Oceanic & Atmospheric Administration to CJC and FCK; and the MASTS pooling initiative (Marine Alliance for Science and Technology for Scotland, funded by the Scottish Funding Council and contributing institutions; grant reference HR09011) is gratefully acknowledged. Finally, we would like to acknowledge Susan Loiseaux-de Goër, Bernard Kloareg, Philippe Potin and Akira F. Peters for their hospitality and support to FCK and CK during their visit to RoscoffPeer reviewedPostprin

    Autophagy in T cells from aged donors is maintained by spermidine and correlates with function and vaccine responses

    Get PDF
    Vaccines are powerful tools to develop immune memory to infectious diseases and prevent excess mortality. In older adults, however vaccines are generally less efficacious and the molecular mechanisms that underpin this remain largely unknown. Autophagy, a process known to prevent aging, is critical for the maintenance of immune memory in mice. Here, we show that autophagy is specifically induced in vaccine-induced antigen-specific CD8+ T cells in healthy human volunteers. In addition, reduced IFNγ secretion by RSV-induced T cells in older vaccinees correlates with low autophagy levels. We demonstrate that levels of the endogenous autophagy-inducing metabolite spermidine fall in human T cells with age. Spermidine supplementation in T cells from old donors recovers their autophagy level and function, similar to young donors' cells, in which spermidine biosynthesis has been inhibited. Finally, our data show that endogenous spermidine maintains autophagy via the translation factor eIF5A and transcription factor TFEB. In summary, we have provided evidence for the importance of autophagy in vaccine immunogenicity in older humans and uncovered two novel drug targets that may increase vaccination efficiency in the aging context

    Standards of pathology in the diagnosis of systemic mastocytosis: recommendations of the EU-US cooperative group

    Get PDF
    Pathology plays a central role in the diagnosis of systemic mastocytosis (SM), its delineation from other neoplasms and reactive conditions, and in monitoring of SM under therapy. The morphologic hallmark of SM is the accumulation of spindle-shaped, hypogranulated mast cells (MCs) in bone marrow (BM) and other extracutaneous tissues. Four of the 5 World Health Organization–defined diagnostic criteria (ie, compact MC aggregates [=major criterion]; atypical MC morphology; activating KIT point mutations; aberrant expression of CD25 and/or CD2 and/or CD30 in MCs [=minor criteria]) can be addressed by the pathologist. The final classification of SM variants as either BM mastocytosis, indolent SM, smoldering SM, aggressive SM (ASM), SM with an associated hematologic neoplasm (SM-AHN), or MC leukemia (MCL) has important prognostic significance and requires the integration of certain morphological, clinical, radiological, and biochemical data, referred to as B- and C-findings. Substantial diagnostic challenges may be posed to the pathologist and clinician especially in the so-called advanced SM variants, that is, ASM, MCL, and SM-AHN. In this article, updated recommendations of the EU-US Cooperative Group regarding standards of pathology in the diagnosis of SM, presented during the year 2020 Working Conference held in September in Vienna, are reported.T. I. George was supported by the ARUP Institute for Clinical and Experimental Pathology. K. Hartmann was supported by the Swiss National Science Foundation, grant number 310030_207705. D. D. Metcalfe, J. J. Lyons, and M. Carter were supported by the Division of Intramural Research, National Institutes of Allergic and Infectious Diseases, National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not represent the official views of the NIH. P. Valent was supported by the Austrian Science Funds (FWF), projects F4701-B20 and F4704-B20

    Efficacy and safety of avapritinib in advanced systemic mastocytosis:interim analysis of the phase 2 PATHFINDER trial

    Get PDF
    Advanced systemic mastocytosis (AdvSM) is a rare, KIT D816V-driven hematologic neoplasm characterized by mast cell infiltration and shortened survival. We report the results of a prespecified interim analysis of an ongoing pivotal single-arm phase 2 trial (no. NCT03580655) of avapritinib, a potent, selective KIT D816V inhibitor administered primarily at a once-daily starting dose of 200 mg in patients with AdvSM (n = 62). The primary endpoint was overall response rate (ORR). Secondary endpoints included mean baseline change in AdvSM–Symptom Assessment Form Total Symptom Score and quality of life, time to response, duration of response, progression-free survival, overall survival, changes in measures of disease burden and safety. The primary endpoint was successfully met (P = 1.6 × 10(-9)), with an ORR of 75% (95% confidence interval 57–89) in 32 response-evaluable patients with AdvSM who had sufficient follow-up for response assessment, including 19% with complete remission with full or partial hematologic recovery. Reductions of ≥50% from baseline in serum tryptase (93%), bone marrow mast cells (88%) and KIT D816V variant allele fraction (60%) were observed. The most frequent grade ≥3 adverse events were neutropenia (24%), thrombocytopenia (16%) and anemia (16%). Avapritinib demonstrated a high rate of clinical, morphological and molecular responses and was generally well tolerated in patients with AdvSM

    Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1

    Get PDF
    SUMO conjugation affects a broad range of processes in Arabidopsis thaliana, including flower initiation, pathogen defense, and responses to cold, drought and salt stress. We investigated two sequence-related SUMO-specific proteases that are both widely expressed and show that they differ significantly in their properties. The closest homolog of SUMO protease ESD4, ESD4-LIKE SUMO PROTEASE 1 (ELS1, alternatively called AtULP1a) has SUMO-specific proteolytic activity, but is functionally distinct from ESD4, as shown by intracellular localization, mutant phenotype and heterologous expression in yeast mutants. Furthermore, we show that the growth defects caused by loss of ESD4 function are not due to increased synthesis of the stress signal salicylic acid, as was previously shown for a SUMO ligase, indicating that impairment of the SUMO system affects plant growth in different ways. Our results demonstrate that two A. thaliana SUMO proteases showing close sequence similarity have distinct in vivo functions

    Targeting of SUMO substrates to a Cdc48-Ufd1-Npl4 segregase and STUbL pathway in fission yeast

    Get PDF
    In eukaryotes, the conjugation of proteins to the small ubiquitin-like modifier (SUMO) regulates numerous cellular functions. A proportion of SUMO conjugates are targeted for degradation by SUMO-targeted ubiquitin ligases (STUbLs) and it has been proposed that the ubiquitin-selective chaperone Cdc48/p97-Ufd1-Npl4 facilitates this process. However, the extent to which the two pathways overlap, and how substrates are selected, remains unknown. Here we address these questions in fission yeast through proteome-wide analyses of SUMO modification sites. We identify over a thousand sumoylated lysines in a total of 468 proteins and quantify changes occurring in the SUMO modification status when the STUbL or Ufd1 pathways are compromised by mutations. The data suggest the coordinated processing of several classes of SUMO conjugates, many dynamically associated with centromeres or telomeres. They provide new insights into subnuclear organization and chromosome biology, and, altogether, constitute an extensive resource for the molecular characterization of SUMO function and dynamics

    SUMO modification of PCNA is controlled by DNA

    Get PDF
    Post-translational modification by the ubiquitin-like protein SUMO is often regulated by cellular signals that restrict the modification to appropriate situations. Nevertheless, many SUMO-specific ligases do not exhibit much target specificity, and—compared with the diversity of sumoylation substrates—their number is limited. This raises the question of how SUMO conjugation is controlled in vivo. We report here an unexpected mechanism by which sumoylation of the replication clamp protein, PCNA, from budding yeast is effectively coupled to S phase. We find that loading of PCNA onto DNA is a prerequisite for sumoylation in vivo and greatly stimulates modification in vitro. To our surprise, however, DNA binding by the ligase Siz1, responsible for PCNA sumoylation, is not strictly required. Instead, the stimulatory effect of DNA on conjugation is mainly attributable to DNA binding of PCNA itself. These findings imply a change in the properties of PCNA upon loading that enhances its capacity to be sumoylated

    A Protein Inventory of Human Ribosome Biogenesis Reveals an Essential Function of Exportin 5 in 60S Subunit Export

    Get PDF
    A systematic search for human ribosome biogenesis factors shows conservation of many aspects of eukaryotic ribosome synthesis with the well-studied process in yeast and identifies an export route of 60S subunits that is specific for higher eukaryotes

    Final Pre-40S Maturation Depends on the Functional Integrity of the 60S Subunit Ribosomal Protein L3

    Get PDF
    Ribosomal protein L3 is an evolutionarily conserved protein that participates in the assembly of early pre-60S particles. We report that the rpl3[W255C] allele, which affects the affinity and function of translation elongation factors, impairs cytoplasmic maturation of 20S pre-rRNA. This was not seen for other mutations in or depletion of L3 or other 60S ribosomal proteins. Surprisingly, pre-40S particles containing 20S pre-rRNA form translation-competent 80S ribosomes, and translation inhibition partially suppresses 20S pre-rRNA accumulation. The GTP-dependent translation initiation factor Fun12 (yeast eIF5B) shows similar in vivo binding to ribosomal particles from wild-type and rpl3[W255C] cells. However, the GTPase activity of eIF5B failed to stimulate processing of 20S pre-rRNA when assayed with ribosomal particles purified from rpl3[W255C] cells. We conclude that L3 plays an important role in the function of eIF5B in stimulating 3′ end processing of 18S rRNA in the context of 80S ribosomes that have not yet engaged in translation. These findings indicate that the correct conformation of the GTPase activation region is assessed in a quality control step during maturation of cytoplasmic pre-ribosomal particles
    corecore